Manual for Scaling Up of Community-Driven Retrofitting of Unsafe Schools

Government of Nepal Ministry of Education, Science & Technology Central Level Project Implementation Unit

Manual for Scaling Up of Community-Driven Retrofitting of Unsafe Schools

Government of Nepal Ministry of Education, Science & Technology Central Level Project Implementation Unit Sanothimi, Bhaktapur 2025

FOREWORD

The devastating earthquake of 2015 highlighted the urgent need of safeguarding Nepal's schools, ensuring the safety of our students and teachers. In response, the Government of Nepal, the Ministry of Education, Science & Technology, and the Central Level Project Implementation Unit initiated the "Disaster Resilient Schools Project" to reconstruct and retrofit affected school buildings. This comprehensive manual is an outcome of the community-driven school retrofitting initiative and serves as a roadmap for retrofitting unsafe schools through community engagement.

To empower the community, the manual emphasizes the significance of community-driven retrofitting. It recognizes the invaluable knowledge and expertise that local communities possess regarding their schools. By involving community members in the retrofitting process, we foster a sense of ownership and ensure that the schools are resilient and sustainable.

As we embark on the nationwide scaling-up of the Community-Driven Retrofitting of Unsafe Schools project, this manual serves as an indispensable tool for all stakeholders. It equips engineers, technicians, community leaders, and school management committees with the necessary knowledge and skills to transform our schools into safe and earthquake-proof learning environments.

Through collaborative efforts, we can enhance the seismic resilience of our schools providing a safe and secure place for students and teachers to learn and grow.

Laxmi Prasad Bhattrai Project Director

PREFACE

One of the most hazard-prone countries in the world, Nepal faces weather-related hazards such as landslides, floods, and droughts. The frequency and intensity of such hazards may increase because of climate change. Nepal also experiences earthquakes, which could trigger landslides, floods, and fires. Although massive earthquakes happen infrequently, they cause significant casualties, physical damage, and losses to the economy. Damage and losses from the 2015 earthquake in Gorkha were assessed at \$7 billion, with 8,790 casualties, 22,300 injuries, 7,800 schools damaged, and 8 million people (almost 29% of the population) affected. More than 72% of the buildings of the country's 35,000 schools are unsafe and require seismic retrofitting. A 2016 structural integrity and damage assessment estimated that 2,234 schools are heavily damaged and not in use in 14 districts that were severely damaged by the 2015 earthquake.

The National Reconstruction Authority (NRA) is the executing agency, which has assigned project implementation responsibility to its Central Level Project Implementation Unit (CLPIU Education). Project activities related to retrofitting of unsafe schools, reducing disaster risks for reconstructed and retrofitted schools, and strengthening of DRM institutional capacity are being undertaken with involvement of students, teachers, community representatives, Technical supporting DRM consultant and local government units.

Data are accumulated and refined on the basis of lessons learned from the retrofitting of the three pilot schools from all the three phases of the GESI responsive On the Job retrofit training. This manual is prepared following the pre-planned framework for the one-day orientation for scaling up of community driven retrofitting of unsafe schools. Community-driven retrofitting not only contributes to the retrofitting of unsafe schools or community buildings but also generates additional desirable outcomes in environment and economy.

Suresh Kumar Wagle Deputy Project Director

ACKNOWLEDGEMENTS

The "Manual for Scaling Up of Community-Driven Retrofitting of Unsafe Schools" was developed by IERC – ERTech Consultancy - REED Nepal - ECoCoDE Nepal – Strength JV under project "Disaster Resilience of Schools Project". I would like to express my sincere thank to Mr. Laxmi Prasad Bhattarai, Project Director of CLPIU, Mr. Suresh Kumar Wagley, Deputy Project Director of CLPIU, Mr. Ana Prasad Neupane and Mr. Basanta Prasad Koirala, Former Project Director of CLPIU, Mr. Ganga Prasad Yadav, Former Deputy Project Director of CLPIU, Mr. Udhab Nepal, Engineer, Mr. Naresh Giri, Senior Project Officer, ADB, Mr. Pramod Pudasaini, A. Project Analyst, ADB, Dr. Diwat Shrestha, Project Management Specialist and Mr. Ishwory Kharel, Structural Engineer, for kind cooperation, suggestions and support during the development of Manual.

I am very glad with the team involved in the project who has continiously supported and contributed to complete the project. I am thankful to Structural Engineer **Dr Krishna Kumar Bhetuwal**, Structural Engineer **Mr.Niroj Maharjan** and Structural Engineer **Mr. Surendra Katwal** for their contribution to develop manual.

Last but not the least I would like to thank entire team of JV , CLPIU and SMC of Janata S.S.-Gorkha, Janak S.S.-Kavre and Balbodh S.S.-Makwanpur for the support.

Peng. Dr. Purushotam Dangol Team Leader

ACRONYMS

ADB	Asian Development Bank
CLPIU	Central Level Project Implementation Unit
CRFP	Carbon Fiber Reinforced Polymer
DLPIU	District Level Project Implementation Unit
DRM	Disaster Risk Management
EDCU	Education Development and Coordination Unit
GESI	Gender Equality and Social Inclusion
IS	Indian Standard
LG	Local Government
NBC	National Building Code
NDT	Non Destructive test
NRA	National Reconstruction Authority
PPE	Personal Protective Equipment
RC	Reinforced Concrete

ToR Terms of Reference

Contents

Table of Contents

1 Introduction		1
1 I Background		1
1.1 Dackground		1
1.2 Scope	n Retrofitting and Its Stakeholder	2
1.3 Community Drive	in Kertolitting and its Stakeholder	2
2 Seismicity of Nepa	1	3
2 Seismicity of Nepa	1	4
2.1 Scisificity of Repa	auake Resistant Design	4
2.2 Configuration Co	nnection and Construction quality (2C Principle)	7
2.5 Configuration, Co	nt of School Buildings	/
3 Damage Assessme	in of School Buildings	9
3.1 Introduction	rement	9
3.2 Rapid Visual Asses	segment	9
4 Vulnerability asses	sment	12
4 Vulnerability asses	sment of School Buildings	1/
4.1 Vulletability asses	sment of school bundnings	1/
4.1.1 Introduction		1/
4.1.2 Evaluation Criteria	a ation	1/
4.1.3 Fleminiary Evalu-		10
4.1.4 Detailed Evaluatio		20
4.2 NDT test	(Rebound Hammer)	28
4.2.1 Jerninde Hammer	(Rebound Hammer)	20
4.2.2 Offrasonic Tuise v	et	31
4.2.3 Redai Detector le	and Strengthening concept	34
5 Repair, Restoration	Tand Strengthening concept	30
5.1 Repair		30
5.2 Restoration	ic strongthoning)	30
5.3 Retrofitting (Seish	ic strengthening)	39
6 1 Retrofitting		40
6.2 Retrofitting Need:		40
6.2 Eactors to be const	dered for retrofitting	40
6.4 Advantages and D	is advantages of Detrofitting:	40
6.5 Criteria for Seismi	c Retrofitting Requirement	40
6.5 1 Criteria of earthqu	ake resistant building:	41
6.5.2 Seismic vulnerabil	ity assessment for reinforced concrete structure.	41
6.5.2 Seismic vulnerabil	ity assessment for masonry structure.	41
6.5.4 General activities	n visual investigation.	41
6.5.5 General activities	n structural investigation.	41
6 5 6 Detailed structura	l analysis:	42
6.6 Requirement and	accessibility	42
7 Seismic Retrofittin	g Techniques of School Buildings	42
7.1 RC frame building	retrofitting	44
7.1.1 RCC retrofitting n	rocedure	44
,		44

7.2 Masonry structures retrofitting	55
8 Quality control and testing of materials	61
8.1 Construction Materials' Quality –	61
8.2 Quality of Workmanship	62
8.3 Some examples of improper construction	64
9 Alternative techniques of retrofitting	66
9.1 Carbon Fiber Reinforced Polymer (CRFP)	66
9.2 Steel Bracing System	68
10 CASE STUDY	69
A. Building Description	69
B. Preliminary evaluation of the existing block	69
B.1 General parameters of the existing block	69
B.2 Structural parameters of the existing block	70
B.3 Architectural plan of the existing block	71
B.4 Configuration-related checks	72
B.5 Load calculations	73
B.5.1Dead load	73
B.5.2Live load	74
B.5.3Earthquake load	74
B.6 Strength-Related Checks	76
B.6.1 Calculation of Seismic Coefficient	76
B.6.2Calculation of Base Shear	77
B.6.3 Base Shear Distribution	77
B.6.4Shear Stress Check	78
B.6.5 Axial Stress check	78
B.6.6Masonry Infill Walls stability check	79
C. Detailed Evaluation	80
C.1 Time period calculation	80
C.2 Modal Participation	81
C.3 Torsional Irregularity Check	81
C.4 Drift	82
C.4.1 Ultimate Limit State (ULS)	82
C.4.2 Serviceability Limit State (SLS)	82
C.5 Component level analysis	83
C.5.1 Column P-M-M interaction ratio	83
C.5.2 Beam Demand	84
C.6 Column Beam Capacity Ratio	88
C.7 Calculation of reinforcement	89
C.7.1 Calculation of column reinforcement required	89
C.7.2 Calculation of Beam reinforcement required	90
C.8 Conclusion	92
D. Retrofit design of the existing school building	93
D.1.1 Calculation of column Concrete Area required	93
D.1.2 Calculation of column Reinforcement Area Provided	95
D.1.3 Column Summary	96
D.1.4 Calculation of Beam reinforcement required	97
D.1.5 Calculation of Beam Concrete Area required	99
D.1.6 Calculation of Beam Reinforcement Area Provided	102
D.1.7 Beam Summary	104

D.2 Detail Evaluation	
105	
D 2 Structural parameters of the retrofitted block	
D.3 Structural parameters of the reformed block	
105	
D.P4Architectural plan of the retrofitted block	
105	
D.4.1 Modelling of Retrofitted Block	
106	
D.4.2 Time period calculation	
107	
D.4.3 Modal Participation	
108	
D.4.4 Torsional Irregularity Check	
D.4.5 Drift	
108	
D.4.6 Component level analysis	
109	
D 4 7 Column Beam Canacity Ratio	
D.4.8 Foundation Check	
115	
D.5 Conclusion	
116	
ANNEX I REFERENCES	
ANNEX II : KELEVENT CODE FOLLOWED	118
ANNEX III : DRAWINGS	119

LIST OF FIGURES

Figure 1 1 Approach for Community Driven Retrofitting	3
Figure 2 1 Seismic Hazard Map of Nepal (NBC 105:2020)	4
Figure 2 2 Performance Objectives under DIfference intensities of Earthquake shaking (IITK-BM	ГРС)
5	
Figure 2 3 Pictorial Illustration of Ductile chain design (IITK-BMTPC)	6
Figure 2 4 Simple plan shape buildings perform well during earthquakes ((IITK-BMTPC)	8
Figure 3 1 Building Significantly out of plumb, RCC building-Gorkha earthquake	10
Figure 3 2 Building Partially Collapsed, masonry building-Gorkha earthquake	10
Figure 3 3 Monument Completely collapsed, masonry building - Grokha earthquake	10
Figure 3 4 Severe Damage to Primary Structural System, RCC building- Kashimir earthquake	10
Figure 3 5 Rapid Visual Assessment Form	11
Figure 3 6 Damage Pattern in Masonry (DUDBC, 2011)	13
Figure 3 7 Damage Pattern in RC Building, (DUDBC, 2011)	14
Figure 3 8 Detailed Evaluation Assessment form.	16
Figure 4 1 Evaluation Process Flow Chart (IS-15988: 2013)	19
Figure 4 2 Illustration of Principle of Sdmidth Hammer Test (thecontractor.org)	28
Figure 4 3 Test Position and Interperation (thecontrctor.org)	29

Figure 4 4 Ultrasonic Measurement Methods (thecontractor.org)	32
Figure 4 5 Rebar Detector Test Device (thecontractor.org)	35
Figure 4 6 Pictorial Illustration of reading of rebar dectator with diameter and concrete cover	36
Figure 5 1 Step-wise process of Seismic Retroftting of Building (DUDBC-UNDP, 2016)	39
Figure 5.2 Repair, Restore and Retrofitting Comparison graph (NRA, 2017)	39
Figure 7 1 Illustration of Excavation of Foundation	44
Figure 7 2 Excavation of Foundation	44
Figure 7 3 Soling work on Foundation	44
Figure 7 4 PCC on Foundation	45
Figure 7 5 Reinforcement on Footing	45
Figure 7 6 Schametic Diagram of footing reinforcemnt	46
Figure 7.7 Concreting in footing	46
Figure 7 8 Formwork on Footing	46
Figure 7 o Illustration of Demolition of wall beside column	40
Figure 7 10 Demolition of wall beside column	47
Figure 7 11 Opgoing chipping work on Column	47
Figure 7.12 Chipping of Column	47
Figure 7.12 Employed Column	4/
Figure 7 14 Slob Cutout	40
Figure 7 14 Stab Cutout	40
Figure 7 15 Remotement work on Column	40
Figure 7 16 - Water tight formwork on Column	49
Figure 7 17 Use of bonding chemical to join new and old existing concrete	49
Figure 7 18 Reconstruction of Plinth Wall	49
Figure 7 19 Reconstruction of Plinth Wall	49
Figure 7 20 Ongoing Chipping on beam and wall demolition work	50
Figure 7 21 Making voids on slab for insertion of new secondary beam	50
Figure 7 22 Making hole on slab for concrete pouring on Main Beam	50
Figure 7 23. Reinforcement work on Beam with anchorage	50
Figure 7 24. Typical Beam jacketing section	51
Figure 7 25 Reinforcement work on Joint	51
Figure 7 26 Typical beam jacketing longitudinal reinforcement detail	51
Figure 7 27 Typical Bam -column joint detail	52
Figure 7 28 Formwork on Beam	52
Figure 7 29 Micro concreting Work on Beam from top of slab	53
Figure 7 30 Removal of formwork and curing	53
Figure 7 31 RCC slab repair and strengthening by adding reinforcement at bottom (NRA, 2017)	54
Figure 7 32 Carbon Laminate for strengthening of slab (DUDBC-UNDP, 2016)	54
Figure 7 33 Marking and Chipping Work	55
Figure 7 34 Marking on wall for position of reinforcement	55
Figure 7 35 Drilling holes for Anchoring	56
Figure 7 36 Wall jacketing and anchorage detail for masnory wall	56
Figure 7 37 Excavation of foundation	56
Figure 7 38 Soling and PCC on foundation	57
Figure 7 39 Placing of reinforcement	57
Figure 7 40 Placing of foundation Beam	57
Figure 7 41 Formwork and concreting of foundation Beam	58
Figure 7 42 Anchoring of splints, bandage and jacketing	58
Figure 7 43 Footing rebar detail	59
Figure 7 44 Anchorage detail	59

Figure 7 45 Micro Concreting and Plaster	59
Figure 7 46 Finished surface after plaster	59
Figure 7 47 Pictorial Illustration of flexible floor strengthening (DUDBC-UNDP, 2016)	60
Figure 7 48 Pictorial Illustration of flexible floor strengthening (ERTech Consultancy)	60
Figure 8 1 Modern Construction Materials.	61
Figure 8 2 Quality of Construction Materials	62
Figure 8 3 Cube test at lab	63
Figure 8 4 Aggregate weighing machine for concrete batching plant	63
Figure 8 5 Sieve analysis of aggregate	63
Figure 8 6 Strength test of rebar	63
Figure 8 7 Clay quantity test in sand at site	64
Figure 8 8 Sand test at LAB	64
Figure 8 9 Improper Workmanship	64
Figure 8 10 Reasons for poor construction quality	65
Figure 9 1 Fiber reinforced strips and sheets	66
Figure 9 2 Process of Carbon Fiber Jacketing (Horse-Construction, 2020)	66
Figure 9 3 Technical Property of carbon fiber and carbon laminate(Horse-Construction, 2020)	67
Figure 9 4 Steel bracing at RCC building (Source: - ERTech Consultancy)	68
Figure 10 1 Ground floor plan	71
Figure 10 2 Section	71
Figure 10 3 Grid 1	83
Figure 10 4 Grid 2	83
Figure 10 5 Grid 3	84
Figure 10 6 Longitudinal rebar at First Floor	84
Figure 10 7 Longitudinal rebar at Second Floor	85
Figure 10 8 Longitudinal rebar at Roof	85
Figure 10 9 Shear Reinforcement at First Floor	86
Figure 10 10 Shear Reinforcement at Second Floor	86
Figure 10 11 Shear Reinforcement at Roof	87
Figure 10 12 Column Beam Capacity ratio	88
Figure 10 13 Ground floor plan	105
Figure 10 14 Section	106
Figure 10 15 3D Modelling	107
Figure 10 16 Grid 1	109
Figure 10 17 Grid 2	110
Figure 10 18 Grid 3	110
Figure 10 19 Demand reinforcement at first floor	111
Figure 10 20 Demand reinforcement at Second floor	111
Figure 10 21 Demand reinforcement at top floor	112
Figure 10 22Column/Beam Capacity ratio at grid 1	112
Figure 10 23 Column/Beam Capacity ratio at grid 2	113
Figure 10 24 Column/Beam Capacity ratio at grid 3	114
Figure 10 25 Footing Reaction (DL+LL)	115
	,

Table of Contents

Table 3 1 Criteria for building being safe	10
Table 4 1 Knowledge Factor, K (IS-15988:2013)	18
Table 4 2 Checklist during Site Visit	20
Table 4 3 Configuration related checks	21
Table 4 4 Live Load Categories and Factors	23
Table 4 5 Effective stiffness of different components	26
Table 4 6 Height to Thickness ratio	27
Table 4 7 Test data and processing form -Schmidth hammer test (ERTech Consultancy)	30
Table 4 8 Test data and processing form – UPV test (ERTech Consultancy)	33
Table 4 9 Velocity Criterion for concrete quality Grading (IS:519 part-5, sec-1)	34
Table 4 10 Test data and processing form -Rebar Detectator (ERTech Consultancy)	36
Table 10 1 General parameters of the existing block	69
Table 10 2 Structural Parameters of the existing block	70
Table 10 3 Existing configuration evaluation as per IS15988: 2013	72
Table 10 4 Unit Weight as per IS875 (Part 1)-1987	73
Table 10 5 Floor Finish Calculation	73
Table 10 6 Wall Load Calculation with/without opening	73
Table 10 7 Live Load	74
Table 10 8 Seismic Coefficient	76
Table 10 9 Base Shear Distribution	77
Table 10 10 Shear Stress Check	78
Table 10 11 Axial Stress check Along Y-direction	78
Table 10 12 Axial Stress check Along X-direction	79
Table 10 13 Masonry Infill Walls stability check	79
Table 10 14 Time period calculation	80
Table 10 15 Modal Participation	81
Table 10 16 Torsional Irregularity Check	81
Table 10 17 ULS drift along X - Direction	82
Table 10 18 ULS drift along Y - Direction	82
Table 10 19 SLS drift	82
Table 10 20 Evaluation Summary	87